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We introduce MuJoCo Playground, a fully open-source framework for robot learning built with MJX,
with the express goal of streamlining simulation, training, and sim-to-real transfer onto robots.
With a simple pip install playground, researchers can train policies in minutes on a single GPU.
Playground supports diverse robotic platforms, including quadrupeds, humanoids, dexterous hands,
and robotic arms, enabling zero-shot sim-to-real transfer from both state and pixel inputs. This is
achieved through an integrated stack comprising a physics engine, batch renderer, and training environ-
ments. Along with video results, the entire framework is freely available at playground.mujoco.org.

1. Introduction
Reinforcement learning (RL) [27] with subse-
quent transfer to hardware (sim-to-real) [69],
is emerging as a leading paradigm in modern
robotics [26, 30, 40]. The benefits of simulation
are obvious – safety and cheap data. The recipe
involves four steps:

1. Create a simulated environment
that matches the real world.

2. Encode desired robot behavior
with a reward function.

3. Train a policy in simulation.
4. Deploy to the robot.

The key enabler of this approach is a simulator
that is realistic, convenient, and fast.

The realism requirement is self-evident, the
“digital twin” of step 1 demands a minimal level
of fidelity [69]. Convenience and usability are
equally critical, streamlining the creation, modifi-
cation, composition, and characterization (system
identification) of simulated robots.

The importance of speed is less obvious – why
does it matter if training takes ten minutes or ten
hours? The answer lies in reward design (step 2),
which cannot be easily automated: what the robot
ought to do is an expression of human preference.
Even if reward design is semi-automated [37],
the process remains iterative: RL excels at find-
ing policies that obtain reward, but the resulting
behavior is often irregular in unexpected ways.

Since steps 2 and 3 (and occasionally step 4) must
be repeated [7], time-to-robot becomes critical:
the time from when you ask the robot to do some-
thing until you see what it thinks you meant.

RL is computationally intensive, requiring an
enormous number of agent-environment interac-
tions to train effective policies [24]. GPU-based
simulation can significantly accelerate this pro-
cess for two key reasons. First, the median GPU
is far more powerful than the median CPU [65],
and while high core-count CPUs exist, they are
uncommon. Second, by keeping the entire agent-
environment loop on device, we can harness
the high-throughput, highly parallel architec-
ture [13, 39]. This is especially true for on-policy
RL [3, 51], which employs GPU-friendly, wide-
batch operations. Locomotion and manipulation
tasks which previously required days of training
on multi-host setups [4, 59], can now be solved
within minutes or hours on a single GPU [19, 50].

MuJoCo [63] is an open-source simulator pub-
licly developed and maintained by Google Deep-
Mind. Designed to support complex, high-fidelity
simulation, it provides a rich model-definition
language and model-editing APIs, which are well-
documented and conveniently exposed. The sim-
plicity and self-consistency of MuJoCo’s data-
structures and pipeline make it particularly well-
suited for transcription to parallel compute frame-
works. We build upon MuJoCo XLA [43] (MJX),
a JAX-based branch of MuJoCo that runs on GPU,
enabling training directly on device.
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Figure 1 | A cartoon of MuJoCo Playground’s diverse environments that were successfully transferred to real
hardware, including Berkeley Humanoid, Unitree Go1 and G1, LEAP hand and Franka Arm.

We introduce MuJoCo Playground, a fully
open-source framework for robot learning de-
signed for rapid iteration and deployment of
sim-to-real reinforcement learning policies. Be-
sides physics and learning, we incorporate on-
device rendering through the Madrona batch ren-
derer [53], facilitating training of vision-based
policies. With a straightforward installation pro-
cess (pip install playground) and cross-
platform support, users can quickly train policies
on a single GPU. The entire pipeline—from en-
vironment setup to policy optimization—can be
executed in a single Colab notebook, with most
tasks requiring only minutes of training time.

MuJoCo Playground’s lightweight implemen-
tation greatly simplifies sim-to-real deployment,
transforming it into an interactive process where
users can quickly tweak parameters to refine
robot behavior. In our experiments, we deployed
both state- and vision-based policies across six
robotic platforms in less than eight weeks. We
hope that MuJoCo Playground becomes a valu-

able resource for the robotics community and ex-
pect it to continue building on MuJoCo’s thriving
open-source ecosystem.

Our work makes three main contributions:

1. We develop a comprehensive suite of robotic
environments using MJX [43], demonstrat-
ing sim-to-real transfer across diverse plat-
forms including quadrupeds, humanoids,
dexterous hands, and robot arms.

2. We integrate the open-source Madrona batch
GPU renderer [53] to enable end-to-end
vision-based policy training on a single GPU
device, achieving zero-shot transfer on ma-
nipulation tasks.

3. We provide a complete, reproducible training
pipeline with notebooks, hyperparameters,
and training curves, enabling rapid iteration
between simulation and real-world deploy-
ment.
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