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We introduce MuJoCo Playground, a fully open-source framework for robot learning built with MJX,
with the express goal of streamlining simulation, training, and sim-to-real transfer onto robots.
With a simple pip install playground, researchers can train policies in minutes on a single GPU.
Playground supports diverse robotic platforms, including quadrupeds, humanoids, dexterous hands,
and robotic arms, enabling zero-shot sim-to-real transfer from both state and pixel inputs. This is
achieved through an integrated stack comprising a physics engine, batch renderer, and training environ-
ments. Along with video results, the entire framework is freely available at playground.mujoco.org.

1. Introduction
Reinforcement learning (RL) [27] with subse-
quent transfer to hardware (sim-to-real) [69],
is emerging as a leading paradigm in modern
robotics [26, 30, 40]. The benefits of simulation
are obvious – safety and cheap data. The recipe
involves four steps:

1. Create a simulated environment
that matches the real world.

2. Encode desired robot behavior
with a reward function.

3. Train a policy in simulation.
4. Deploy to the robot.

The key enabler of this approach is a simulator
that is realistic, convenient, and fast.

The realism requirement is self-evident, the
“digital twin” of step 1 demands a minimal level
of fidelity [69]. Convenience and usability are
equally critical, streamlining the creation, modifi-
cation, composition, and characterization (system
identification) of simulated robots.

The importance of speed is less obvious – why
does it matter if training takes ten minutes or ten
hours? The answer lies in reward design (step 2),
which cannot be easily automated: what the robot
ought to do is an expression of human preference.
Even if reward design is semi-automated [37],
the process remains iterative: RL excels at find-
ing policies that obtain reward, but the resulting
behavior is often irregular in unexpected ways.

Since steps 2 and 3 (and occasionally step 4) must
be repeated [7], time-to-robot becomes critical:
the time from when you ask the robot to do some-
thing until you see what it thinks you meant.

RL is computationally intensive, requiring an
enormous number of agent-environment interac-
tions to train effective policies [24]. GPU-based
simulation can significantly accelerate this pro-
cess for two key reasons. First, the median GPU
is far more powerful than the median CPU [65],
and while high core-count CPUs exist, they are
uncommon. Second, by keeping the entire agent-
environment loop on device, we can harness
the high-throughput, highly parallel architec-
ture [13, 39]. This is especially true for on-policy
RL [3, 51], which employs GPU-friendly, wide-
batch operations. Locomotion and manipulation
tasks which previously required days of training
on multi-host setups [4, 59], can now be solved
within minutes or hours on a single GPU [19, 50].

MuJoCo [63] is an open-source simulator pub-
licly developed and maintained by Google Deep-
Mind. Designed to support complex, high-fidelity
simulation, it provides a rich model-definition
language and model-editing APIs, which are well-
documented and conveniently exposed. The sim-
plicity and self-consistency of MuJoCo’s data-
structures and pipeline make it particularly well-
suited for transcription to parallel compute frame-
works. We build upon MuJoCo XLA [43] (MJX),
a JAX-based branch of MuJoCo that runs on GPU,
enabling training directly on device.
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Figure 1 | A cartoon of MuJoCo Playground’s diverse environments that were successfully transferred to real
hardware, including Berkeley Humanoid, Unitree Go1 and G1, LEAP hand and Franka Arm.

We introduce MuJoCo Playground, a fully
open-source framework for robot learning de-
signed for rapid iteration and deployment of
sim-to-real reinforcement learning policies. Be-
sides physics and learning, we incorporate on-
device rendering through the Madrona batch ren-
derer [53], facilitating training of vision-based
policies. With a straightforward installation pro-
cess (pip install playground) and cross-
platform support, users can quickly train policies
on a single GPU. The entire pipeline—from en-
vironment setup to policy optimization—can be
executed in a single Colab notebook, with most
tasks requiring only minutes of training time.

MuJoCo Playground’s lightweight implemen-
tation greatly simplifies sim-to-real deployment,
transforming it into an interactive process where
users can quickly tweak parameters to refine
robot behavior. In our experiments, we deployed
both state- and vision-based policies across six
robotic platforms in less than eight weeks. We
hope that MuJoCo Playground becomes a valu-

able resource for the robotics community and ex-
pect it to continue building on MuJoCo’s thriving
open-source ecosystem.

Our work makes three main contributions:

1. We develop a comprehensive suite of robotic
environments using MJX [43], demonstrat-
ing sim-to-real transfer across diverse plat-
forms including quadrupeds, humanoids,
dexterous hands, and robot arms.

2. We integrate the open-source Madrona batch
GPU renderer [53] to enable end-to-end
vision-based policy training on a single GPU
device, achieving zero-shot transfer on ma-
nipulation tasks.

3. We provide a complete, reproducible training
pipeline with notebooks, hyperparameters,
and training curves, enabling rapid iteration
between simulation and real-world deploy-
ment.
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Figure 2 | A preview of locomotion and manipulation environments available in MuJoCo Playground.

2. Environments
MuJoCo Playground contains environments in 3
main categories: DeepMind (DM) Control Suite,
Locomotion, and Manipulation, which we briefly
describe in this section. Locomotion and manipu-
lation environments are tailored to robotic use-
cases and we show zero-shot sim-to-real trans-
fer in many of the available environments. Play-
ground directly utilizes MuJoCo Menagerie [68]
which offers a suite of robot assets and configura-
tions tailored to run in MuJoCo.

2.1. DM Control Suite
The majority of RL environments from [61] are
re-implemented in MJX, and serve as entry-level
tasks to familiarize users with MuJoCo Play-
ground (Figure 3).

Figure 3 | Several DM Control Suite environments.

2.2. Locomotion
Locomotion environments in MuJoCo Playground
are implemented for multiple quadrupeds and
bipeds (Figure 2 left). The quadrupeds include
the Unitree Go1, Boston Dynamics Spot, and
Google Barkour [6], while the humanoids include
the Berkeley Humanoid [35], Unitree H1 and G1,
and the Robotis OP3. For each robot embodiment,
we implement a joystick environment that learns
to track a velocity command consisting of base
linear velocities in both the forward and lateral
directions, as well as a desired yaw rate. On the
Unitree Go1, we additionally implement fall re-
covery and handstand environments. A complete
list of locomotion environments is provided in
Table 5 in the appendix.

We demonstrate sim-to-real transfer in two
main sets of experiments. First, on the Unitree
Go1, we deploy joystick, fall recovery, and hand-
stand policies. Second, we demonstrate joystick-
based locomotion on the Berkeley Humanoid and
the Unitree G1. More details on these sim-to-real
experiments can be found in Section 4.2.

2.3. Manipulation
Manipulation environments in MuJoCo Play-
ground are implemented for both prehensile and
non-prehensile tasks (Figure 2 right). With the
Leap Hand [56] robot, we demonstrate contact-
rich dexterous re-orientation of a block. Using
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the Franka Emika Panda and Robotiq gripper,
we show re-orientation of a yoga block using
high frequency torque control. We implement
a simple vision-based pick-cube environment on
a Franka arm using the Madrona batch renderer.
A few additional environments, such as bi-arm
peg-insertion with the Aloha robot [2], are also
available. We refer to Table 8 in the appendix for
a full set of environments.

We demonstrate sim-to-real transfer on the
Leap Hand and Franka arm robots, including an
environment trained from vision for the pick-cube
task. More details on the sim-to-real experiments
are available in Section 4.3.

3. Batch Rendering with Madrona
MuJoCo Playground enables vision-based envi-
ronments through an integration of MJX with
Madrona [54]. Madrona is a GPU-based entity-
component-system (ECS), which contains GPU
implementations of high throughput rendering
[49]. Madrona provides two rendering backends:
a software-based batch ray tracer written in CUDA
(used for the experiments in this work) and a
Vulkan-based rasterizer. The raytracing backend
supports features including complex lighting sce-
narios, shadows, textures, and geometry materi-
als. See Figure 4 for examples of rendered images
using the batch ray tracer. Some features such as
deformable materials, moving lights, and terrain
height fields will be added in the future.

The Madrona Batch Renderer is integrated
with MJX through low-level JAX [5] primi-
tives that connect to the initialization and ren-
der functions exposed by Madrona. These
JAX primitives allow for Madrona to inter-
act seamlessly with JAX transformations such
as jit and vmap. Mujoco Playground pro-
vides two examples: (cartpole-balance and
PandaPickCubeCartesian) to showcase the
implementation of vision-based environments
and training of vision-based policies.

The Madrona MJX integration also supports
customization of each environment instance, al-
lowing for domain randomization [62] of visual
properties such as geometry size, color, lighting

conditions, and camera pose. These randomiza-
tions play a crucial role in the sim-to-real transfer
of vision-based policies, which we discuss more
in Section 4.3.3.

Figure 4 | Sample renders from the Madrona batch
renderer for the Panda and Aloha environments. Left-
most images are the original environments. The re-
maining images highlight the the support for lighting,
shadows, textures, and colors, including the ability to
domain randomize these parameters during training.

4. Results
In this section, we report RL and sim-to-real re-
sults for environments in MuJoCo Playground.
Sim-to-real experiments (see some examples in
Figure 5) are performed for locomotion and ma-
nipulation environments from both propriocep-
tive state and from vision. We briefly discuss RL
training on different hardware devices and RL
libraries.

4.1. DM Control Suite
We train state-based policies for all available tasks,
with most environments training in under 10 min-
utes on a single GPU device. More details on the
training process can be found in Appendix B.2.
All available environments in the MJX port of the
DM Control Suite, including any modifications,
are detailed in Appendix B.1.

Using the batch renderer, we also implement
pixel-based observations for the CartpoleBalance
environment. These observations are generated
on the GPU, allowing us to keep physics, render-
ing, and training entirely on-device. Although
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Figure 5 | Footage from four of our deployed policies. a) Go1 joystick policy recovering from a kick while
travelling at ∼ 2m/s, b) Berkeley humanoid joystick policy tracking an angular velocity command on a slippery
surface. c) In-Hand Cube Reorientation transitioning between two target poses. d) Non-prehensile policy
issuing torque commands to rotate a block by 180 degrees.

other DM Control Suite environments can also
be rendered with Madrona, we demonstrate end-
to-end RL training on only one task, leaving a
more comprehensive exploration for future work.
Appendix E provides more information on how
CartpoleBalance was modified and trained for
pixel observations.

4.2. Locomotion
We present sim-to-real locomotion results on both
a quadruped (Unitree Go1) and two humanoid
platforms (Berkeley Humanoid and Unitree G1).
Further details on theMDP formulation, including
rewards, observation spaces, and action spaces,
are provided in Appendix C.

4.2.1. Quadruped Locomotion

Task definition. We implement a joystick loco-
motion task as in [25, 50], where the command
is specified by three values indicating the desired
forward velocity, lateral velocity, and turning rate
of the robot’s root body. Additionally, we design
policies for handstand and footstand tasks, in
which the robot balances on the front or hind legs,

respectively, while minimizing actuator torque.
For fall recovery, we follow [30, 58], enabling the
robot to return to a stable “home” posture from
arbitrary fallen configurations.

Hardware. We deploy on the Unitree Go1,
which is a quadruped robot with four legs, each
possessing three degrees of freedom. Trained
policies run on real-world outdoor terrain (grass
and concrete) and indoor surfaces with different
friction properties.

Training. We domain randomize for sensor
noise, dynamics properties and task uncertain-
ties. We firstly train the policy in flat ground with
restricted command ranges within 5 minutes (2x
RTX 4090). and finetune it in rough terrain with
wider ranges. See Appendix C for more detail.

Results. All four policies (joystick, handstand,
footstand, and fall recovery) transfer robustly
from simulation to reality, coping with uneven
terrain and moderate external perturbations with-
out additional fine-tuning. Videos of these deploy-
ments are provided on our project website.
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4.2.2. Humanoid Locomotion

Task definition. We implement the same joy-
stick locomotion task as shown for the quadruped
environment.

Hardware. We perform sim-to-real experi-
ments on two different humanoid platforms: a)
Berkeley Humanoid [35], a low-cost, lightweight
bipedal robot with 6DoF per leg, and Unitree
G1, a humanoid robot featuring 29DoF in total.
Both systems are evaluated in indoor environ-
ments, with slight variations in surface friction
and ground compliance.

Training. We follow the domain randomization
and finetuning strategies of the quadruped robot.
Training on flat ground lasts under 15 minutes for
the Berkeley Humanoid, and under 30 minutes
for the Unitree G1 on two RTX 4090.

Results. We successfully deploy joystick-based
locomotion on the Berkeley Humanoid, demon-
strating robust tracking of velocity commands on
surfaces ranging from rigid floors to soft and slip-
pery terrains. On the Unitree G1, our zero-shot
policy similarly achieves stable walking and turn-
ing on standard indoor floors. Although minor
tuning for each platform’s unique dynamics may
further enhance performance, these results con-
firm that our approach generalizes across a range
of legged robot morphologies.

4.3. Manipulation
In this section, we present sim-to-real results for
a broad range of manipulation tasks, including
dexterous in-hand manipulation, non-prehensile
manipulation, and vision-based grasping. These
tasks illustrate Playground’s ability to address a
diverse segment of the manipulation spectrum
and highlight its robust deployment in real-world
settings.

4.3.1. In-Hand Cube Reorientation

Task definition. We implement an in-hand
cube reorientation task using the low-cost, dexter-
ous LEAP hand platform [56], closely following
previous works on in-hand manipulation [4, 19].
The task involves reorienting a 7 cm cube repeat-

Table 1 | In-hand reorientation results on the LEAP
hand over 10 trials, reporting the number of consecu-
tive successful rotations before failure. The final two
columns show the median and mean of the #Rotations
metric.

Trial Summary
1 2 3 4 5 6 7 8 9 10 Median Mean

# Rotations 3 27 8 2 15 3 4 1 3 5 3.5 7.1

edly from random initial poses to new target ori-
entations in SE(3) without dropping it. Further
task details are provided in Appendix D.4.

Hardware. We employ the same hardware con-
figuration as in [32], mounting the LEAP hand on
an 80/20 frame with a 3D-printed bracket that
tilts the palm downward by 20°. A single Intel
RealSense D415 camera, positioned above the
workspace, provides pose estimates of the cube
via a pretrained detector [19]. Although occlu-
sions can introduce observation noise, we leave
multi-camera extensions to future work. The pol-
icy operates at 20Hz, which remains comfortably
below the USB-Dynamixel control bandwidth.

Training. To promote sim-to-real transfer, we
apply domain randomization on the robot pa-
rameters as well as cube mass and friction. We
also include sensor noise, and we finetune with
a progressive curriculum to increase both noisy
pose estimates and action regularization. The
policy trains within 30min on two RTX 4090
GPUs. Further training details are provided in
Appendix D.4.

Results. As summarized in Table 1, our learned
policy demonstrates early signs of robust in-hand
reorientation with MuJoCo Playground. The most
frequent failure occurs when the cube becomes
wedged in the space present between the fingers
and the palm of the LEAP hand, causing the policy
to stall. Although less common, we also observe
accidental interlocking of the index and thumb,
attributed to physical flex in the low-cost hard-
ware. Videos of real-world deployments can be
found on our project page. We note that improved
camera coverage and more accurate collision ge-
ometries could mitigate these edge-case failures,
which we leave for future work.
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4.3.2. Non-Prehensile Block Reorientation

Task definition. We present a sim-to-real setup
for non-prehensile reorientation of a yoga block
on a commonly available Franka Emika Panda
robot arm with a Robotiq gripper, achieving high
zero-shot success. The task involves moving a
yoga block from a random initial pose in the
robot’s workspace to a fixed goal pose. A trial
is deemed successful if the agent reorients the
block within 3 cm of the goal position and within
10° of the desired orientation.

Hardware. The policy receives estimates of the
block’s position and orientation from an open-
source camera tracker [44]. We use direct high-
frequency torque control at 200Hz, where the
RL policy outputs motor torques for the arm’s
seven joints (with the gripper closed). By learn-
ing to control torques rather than joint positions,
the agent develops smooth, compliant behavior
that transfers effectively to hardware, delivering
superior performance even when direct torque
control at high frequencies poses learning chal-
lenges [22]. This recipe, therefore, holds broad
value for practitioners.

Training. Robust zero-shot transfer is enabled
by stochastic delays and progressive curriculum
learning. Each training episode injects random-
ization into initial poses, joint positions, and ve-
locities, while also imposing action and observa-
tion stochastic delays tomirror practical hardware
latency. A simple curriculum gradually increases
the block’s displacement and orientation range
upon each success, preventing overfitting to eas-
ier conditions. Training takes 10 minutes on 16x
A100 devices.

Results. These techniques, combined with
200Hz direct torque control, produce a policy
resilient to real-world perturbations. The agent
reliably reorients the block on hardware with no
additional fine-tuning as shown in Table 2. Videos
of real-world deployments are provided on our
project website. Additional implementation de-
tails are given in Appendix D.5.

Table 2 | Sim-to-real reorientation performance on
the Franka Emika Panda robot, evaluated across 35
hardware trials. Each metric is reported as the median
and mean (with a 95% confidence interval). The suc-
cess rate is bolded to highlight final task performance.
The training was done on 16x A100 GPUs.
Metric Median Mean ± 95% Confidence Interval

Real Success (%) ↑ 100 85.7 ± 12.2
Position Error (cm) ↓ 1.95 5.28 ± 3.26
Rotation Error (°) ↓ 1.72 3.32 ± 1.59

4.3.3. Pick-Cube from Pixels

Task definition. We demonstrate sim-to-real
transfer with pixel-based policies on a Franka
Emika Panda robot. The robot must reliably grasp
and lift a small 2× 2× 3 cm block from a random
location on the table and move it 10 cm above the
surface. The policy receives a 64× 64 RGB image
as input and outputs a Cartesian command, which
is processed by a closed-form inverse kinematics
solution to yield joint commands. To simplify the
task, we restrict the end-effector to a 2D Y-Z plane
(while always pointing downward) and provide a
binary jaw open/close action.

Hardware. We use a Franka Emika Panda
robot with a single Intel RealSense D435 cam-
era mounted to capture top-down RGB images.
The policy operates at 15Hz, and we run infer-
ence on an RTX 3090 GPU. Our setup ensures
that the block starts within the field of view over
a 20 cm range along the y-axis.

Training. To bridge the sim-to-real gap, we ap-
ply domain randomization across visual prop-
erties such as lighting, shadows, camera pose,
and object colors. We also add random bright-
ness post-processing, and introduce a stochastic
gripping delay of up to 250ms. We choose a re-
duced action dimension of three (Y-movement,
Z-movement, and discrete jaw control) for train-
ing sample efficiency, but we have found that the
task can also be solved in full Cartesian or joint
space given additional camera perspectives and
more training samples. Training in simulation
takes ten minutes on a single RTX 4090.

Results. Our policy achieves a 100% success
rate in 12 real-world trials, robustly grasping
the block and lifting it clear of the table. It
demonstrates resilience to moderate variations
in lighting and minor camera shaking, as shown
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Figure 6 | Training wallclock time for LeapCubeRe-
orient on different GPU device topologies. 1x 4090
takes ∼ 2080 (s) to train and 8x H100 takes ∼ 670
(s) to train. All runs use the same hyperparams (e.g.
8192 num envs); we leave tuning hyperparams per
topology as a future exercise.

in the videos on our project website. These find-
ings highlight MuJoCo Playground’s capacity for
training pixel-based policies that transfer reliably
to real hardware in a zero-shot manner. Addi-
tional implementation details are described in
Appendix E.

4.4. Training Throughput
Across our sim-to-real studies, we used several
GPU hardware setups and topologies, including
NVIDIA RTX 4090, A100, and H100 GPUs. In Fig-
ure 6, we break down the training performance
of the LeapCubeReorient environment on differ-
ent configurations for a fixed set of RL hyper-
parameters, demonstrating that MJX is effective
on both consumer-grade and datacenter graphics
cards. We see that GPUs with higher theoretical
performance and larger topologies can reduce
training time by a factor of 3x on a contact-rich
task like in-hand reorientation. We leave opti-
mization of topology-specific hyper-parameters
as future work (e.g. the number of environments
should ideally increase for larger topologies to
maximize throughput, as long as the RL algorithm
can utilize the increase in data per epoch). In Ta-
ble 4, Table 7, and Table 9 in the appendix, we re-
port RL training throughput for all environments
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Figure 7 | Environment steps per second on the single-
camera CartpoleBalance and PandaPickCubeCartesian
environments with pixel-based observations from our
on-device renderer.

in MuJoCo Playground on a single A100 GPU.

4.4.1. Training Throughput with Batch Ren-
dering

Figure 7 highlights the throughput of stepping
two of our environments with pixel observations
at different resolutions. By pairing MJX physics
with Madrona batch rendering, our Cartpole and
Franka environments unroll at roughly 403,000
and 37,000 steps per second respectively. Note
that our Franka physics are over 20x more costly
than Cartpole’s, resulting in the lower sensitivity
of FPS to image resolution.

Computationally, pixel-based policy training
generally involves four main components: physics
simulation, observation rendering, policy infer-
ence and policy updates. Figure 7 only encapsu-
lates the former two and is not fully indicative of
overall training throughput.

We find that in the context of a PPO train-
ing loop, physics, rendering, and inference to-
gether only comprise 9% and 43% of the Cart-
pole and Franka total training times, respectively,
with most of the time spent updating the expen-
sive CNN-based networks. Hence, compared to
traditional on-policy training pipelines, we have
shifted our bottleneck from collecting data to
processing it. Training bottlenecks are further
discussed in Appendix E.3 under Table 10 and Ta-
ble 11. Further performance benchmarking and
a rough comparison against prior simulators are
in Appendix E.2.
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and brax on an RTX-4090 GPU for 3 seeds each on the
Unitree Go1.

4.4.2. RL Libraries

While MuJoCo Playground primarily uses a JAX-
based physics simulator, practitioners are able to
use both JAX and torch-based RL libraries for
training RL agents. In Figure 8, we show re-
ward curves for PPO agents trained using both
Brax [13] and RSL-RL [31] implementations.
Each corresponding RL library is trained with
custom hyperparameters tailored to the corre-
sponding PPO implementation. Both libraries
are able to achieve successful rewards and gaits
within similar wallclock times. All other results
in this paper were obtained using the Brax PPO
and SAC implementations.

5. Related Work
Physics simulation on GPU. The PhysX GPU
implementation [34] has been heavily relied on
for robotic sim-to-real workloads via IsaacGym
[39] and more recently Isaac Lab [41]. The
PhysX GPU implementation, however, is closed-
source [34] and researchers lack the ability to
extend the simulator for their specific tasks or
workloads. Several GPU-based physics engines
are open-source, such as MJX [43, 63], Brax [13],
Warp [38], and Taichi [23]. Only a limited set of
robot environments [52, 66] leverage these open-
source counterparts, in contrast to the wide range
of robotic sim-to-real results that were achieved
with IsaacGym and Isaac Lab. Most recently, Gen-
esis [14] provides a rigid-body implementation

similar to MJX implemented using Taichi, that
allows for dynamic constraints/contacts. How-
ever, sim-to-real results are still limited to a few
locomotion policies.

Sim-to-real RL. A variety of locomotion and
manipulation policies have successfully been de-
ployed in the real world zero-shot [9, 10, 33, 36,
47, 57, 70]. We complement these results by
demonstrating zero-shot sim-to-real on the Leap
Hand, Unitree Go1, Berkeley Humanoid, Unitree
G1, and Franka arm using MuJoCo rather than
closed-source simulators. Similar to [39, 41], we
provide code for environments and training.

Vision-based RL. State-of-the-art algorithms
such as DrQ [67], RL from Augmented Data
(RAD) [29], Dreamerv3 [17], TD-MPC2 [20],
and EfficientZeroV2 [64] have pushed pixel-based
RL performance over the years. Transferring
these advances to the real world is appealing,
as visual control loops offer precise positioning
and robust behaviour in uncontrolled in-the-wild
scenarios [18]. The limitation of training directly
from pixel data is the large visual sim-to-real
gap between simulation and reality, which is of-
ten overcome using domain randomization [62].
However, such training methods require exponen-
tially more training samples. As as result, policies
are typically trained with proprioceptive observa-
tions in simulation and subsequently distilled into
vision-based policies offline [8, 9, 16], or trained
with smaller exteroceptive observations [1, 40].
With Madrona, we are able to train vision-based
policies directly in simulation without a distilla-
tion step using high-throughput batch rendering,
similar to [41] and [60].

6. Limitations
MuJoCo Playground inherits the limitations of
MJX due to constraints imposed by JAX. First,
just-in-time (JIT) compilation can be slow (1-3
minutes on Playground’s tasks). Second, compu-
tation time related to contacts does not scale like
the number of active contacts in the scene, but
like the number of possible contacts in the scene.
This is due to JAX’s requirement of static shapes
at compile time. This limitation can be overcome
by using more flexible frameworks like Warp [38]
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and Taichi [14]. This upgrade is an active area
of development. Finally we should note that the
vision-based training using Madrona is still at an
early stage.

7. Conclusion
MuJoCo Playground is a library built upon the
open-source MuJoCo simulator and Madrona
batch renderer with implementations across sev-
eral reinforcement learning and robotics environ-
ments. We demonstrate policy training on vari-
ous GPU topologies using JAX and pytorch-based
reinforcement learning libraries. We also demon-
strate sim-to-real deployment on several robotic
tasks and embodiments, from locomotion to both
dexterous and non-prehensile manipulation from
proprioceptive state and from pixels. We look for-
ward to seeing the community put this resource
to use in advancing robotics research and its ap-
plications.
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A. Author Contributions
A.1. Real World Experiments
Locomotion
• Qiayuan Liao and Kevin Zakka set up and iterated on all Go1 and Berkeley Humanoid tasks and

real-world deployments.
• Qiayuan Liao, Kevin Zakka, and Carmelo Sferrazza set up, iterated on and deployed policies on

the G1.

Manipulation
• Kevin Zakka and Arthur Allshire built and set up deployment on the open-source LEAP hand. Arthur

implemented vision-based cube state estimation, enabling sim-to-real transfer.
• Kevin Zakka and Qiayuan Liao iterated on in-hand reorientation results.
• Mustafa Haiderbhai and Jing Yuan Luo designed the visual Panda Pick Cube experiments and

deployed them on real hardware.
• Samuel Holt and Baruch Tabanpour designed the non-prehensile manipulation task and deployed

it on real hardware. Samuel Holt built and setup deployment for both the robot controller in
C++ and vision-based block state estimation pipeline for the Franka-Robotiq arm, calibration, and
iterated the task and setup to enable reliable sim-to-real transfer, through accurate tracking and
latency optimization in the real setup.

A.2. RL and Simulation
Locomotion
• Baruch Tabanpour implemented the first Barkour joystick task and helped replicate the Barkour

results on the Go1.
• Kevin Zakka implemented various joystick and fall-recovery tasks for multiple platforms, including

Unitree Go1, G1, Berkeley Humanoid, and others.
• Carmelo Sferrazza iterated on tasks for Berkeley Humanoid, H1, and G1, achieving the first

implementation and walking gaits for G1.

Manipulation
• Baruch Tabanpour implemented the first open-source manipulation environment: Franka Pick

Cube.
• Kevin Zakka implemented the LEAP hand rotation and re-orientation tasks, with contributions

from Baruch Tabanpour for basic reward structure and sweeps.
• Arthur Allshire significantly improved the LEAP hand task results.
• Samuel Holt implemented the first version of the Panda Push Cube task including domain ran-

domization, which was refactored and improved from contributions from Baruch Tabanpour for
improved rewards, sweeps and domain randomization.

• Jing Yuan Luo implemented the Open Cabinet task and adapted Pick Cube for orientation targets.
• Erik Frey implemented the first version of the ALOHA task, with tuning and finalization by Baruch

and Andrew.

A.2.1. DM Control Suite
• Kevin Zakka ported over the DM Control Suite tasks and tuned the first RL baseline using SAC.
• Baruch Tabanpour added the PPO baseline and ran hyperparameter sweeps for both RL baselines.
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• Jing Yuan Luo implemented and tuned the Vision Cartpole Task.

PyTorch Integration
• Arthur Allshire led and implemented the integration of Playground with PyTorch and rsl_rl.

A.3. Miscellaneous
• Baruch Tabanpour advised and improved simulation speed for both manipulation and locomotion

tasks.
• Jing Yuan Luo worked on paper figures and writing.
• Samuel Holt contributed the figure plotting code.

A.4. Vision
• Mustafa Haiderbhai worked on Madrona-MJX feature development.
• Mustafa Haiderbhai and Jing Yuan Luo worked on Madrona-MJX integration into Playground.
• Jing Yuan Luo benchmarked Madrona-MJX.
• Erik Frey and Baruch Tabanpour contributed to early versions of Madrona-MJX.

A.5. Software Infrastructure
• Baruch Tabanpour and Kevin Zakka led the development and release of MuJoCo Playground.
• Baruch Tabanpour advised on brax and MuJoCo MJX, enabling upstream changes.
• Kevin Zakka added the asymmetric actor-critic implementation to the brax PPO codebase.
• Jing Yuan Luo added vision support to the brax PPO codebase.
• Kevin Zakka wrote MJX-to-MuJoCo sim2sim deployment code, with contributions from Carmelo

Sferrazza for the joystick interface.
• Kevin Zakka and Jing Yuan Luo developed the Brax Flax to ONNX conversion script.

A.6. Project Management
• Kevin Zakka and Baruch Tabanpour conceived and led the project.
• Baruch Tabanpour led the paper writing effort.
• Carmelo Sferrazza, Erik Frey, Yuval Tassa, and Pieter Abbeel advised and guided the project.
• Carmelo Sferrazza and Yuval Tassa contributed significantly to paper writing.
• Pieter Abbeel, Erik Frey, Koushil Sreenath and Yuval Tassa provided resource support and feedback.
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B. DM Control Suite
B.1. Environments
In Table 3, we show the environments from DM Control Suite ([61]) that were re-implemented in
MuJoCo Playground. Certain XMLs were modified for performance and are shown in the table.

B.2. RL Training Results
For all DM Control Suite environments ported to MuJoCo Playground, we train both PPO [51] and
SAC [15] using the RL implementations in [13] and we report reward curves below. In Figure 9 we
report environment steps versus reward and in Figure 10 we report wallclock time versus reward. All
environments are run across 5 seeds on a single A100 GPU.

B.3. RL Training Throughput
We report training throughput on all DM Control Suite environments in Table 4 by dividing the
number of environment steps by wallclock time, as reported in Appendix B.2, for each RL algorithm.
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Env MJX XML Modifications
acrobot-swingup X iterations=2, ls_iterations=4
acrobot-swingup_sparse X

ball_in_cup-catch X iterations=1, ls_iterations=4
cartpole-balance X iterations=1, ls_iterations=4
cartpole-balance_sparse X

cartpole-swingup X

cartpole-swingup_sparse X

cheetah-run X iterations=4, ls_iterations=8, max_contact_points=6,
max_geom_pairs=4

finger-spin X iterations=2, ls_iterations=8, max_contact_points=4,
max_geom_pairs=2, removed cylinder collision

finger_turn_easy X

finger_turn_hard X

fish-upright X iterations=2, ls_iterations=6, disabled contacts
fish-swim X

hopper-stand X iterations=4, ls_iterations=8, max_contact_points=6,
max_geom_pairs=2

hopper-hop X

humanoid-stand X timestep=0.005, max_contact_points=8,
max_geom_pairs=8

humanoid-walk X

humanoid-run X

pendulum-swingup X timestep=0.01, iterations=4, ls_iterations=8
point_mass-easy X iterations=1, ls_iterations=4
reacher-easy X timestep=0.005, iterations=1, ls_iterations=6
reacher-hard X

swimmer-swimmer6 X timestep=0.003, iterations=4, ls_iterations=8, con-
type/conaffinity set to 0

swimmer-swimmer15 ×
walker-stand X timestep=0.005, iterations=2, ls_iterations=5,

max_contact_points=4, max_geom_pairs=4
walker-walk X

walker-run X

manipulator-bring_ball ×
manipulator-bring_peg ×
manipulator-insert_ball ×
manipulator-insert_peg ×
dog-stand ×
dog-walk ×
dog-trot ×
dog-run ×
dog-fetch ×

Table 3 | DM Control Suite Environments ported to MJX. Where specified, XML modifications were
made to the solver iterations, line search iterations, as well as contact custom parameters for MJX.
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Env PPO Steps per Second SAC Steps Per Second
AcrobotSwingup 752092 ± 11562 30661 ± 244
AcrobotSwingupSparse 750597 ± 4640 30624 ± 210
BallInCup 235899 ± 565 15492 ± 283
CartpoleBalance 718626 ± 6894 30891 ± 168
CartpoleBalanceSparse 721061 ± 14135 31031 ± 183
CartpoleSwingup 728088 ± 12503 30870 ± 207
CartpoleSwingupSparse 718355 ± 10189 31061 ± 226
CheetahRun 435162 ± 12183 18819 ± 202
FingerSpin 246791 ± 1763 16475 ± 153
FingerTurnEasy 245255 ± 4561 16086 ± 112
FingerTurnHard 245421 ± 4278 16084 ± 69
FishSwim 183750 ± 1773 11591 ± 55
HopperHop 201313 ± 2833 12098 ± 166
HopperStand 201517 ± 3227 12008 ± 255
HumanoidRun 91617 ± 1019 5886 ± 62
HumanoidStand 91927 ± 1004 5893 ± 17
HumanoidWalk 91563 ± 1150 5842 ± 51
PendulumSwingup 724126 ± 21524 32836 ± 178
PointMass 730775 ± 3608 31710 ± 148
ReacherEasy 520021 ± 9637 24888 ± 149
ReacherHard 523441 ± 8012 24874 ± 156
SwimmerSwimmer6 167259 ± 2377 10012 ± 79
WalkerRun 141581 ± 831 6069 ± 48
WalkerStand 140360 ± 1762 6085 ± 29
WalkerWalk 139818 ± 1267 6098 ± 30

Table 4 | Training throughput is displayed for all the DM Control Suite environments on an A100
GPU device across 5 seeds using brax PPO and the RL hyperparameters in Appendix Appendix F. We
report the 95th percentile confidence interval.
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Figure 9 | Reward vs environment steps for PPO and SAC on the full DM Control Suite environments in
MuJoCo Playground. We run PPO for 60M steps, with a few selected environments running on 100M steps.
SAC runs for 5M steps. All settings are run with 5 seeds on a single A100 GPU device.
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Figure 10 | Reward vs wallclock time for PPO and SAC on the full DM Control Suite environments in MuJoCo
Playground. All settings are run with 5 seeds on a single A100 GPU device.
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C. Locomotion
C.1. Environment
In Table 5 we show all the locomotion environments available in MuJoCo Playground, broken down
by robot platform and available controller.

Robot Type Environment
Google Barkour Quadruped JoystickFlatTerrain, JoystickRoughTerrain
Berkeley Humanoid Biped Joystick
Unitree G1 Biped Joystick
Unitree Go1 Quadruped JoystickFlatTerrain, JoystickRoughTerrain, Getup,

Handstand, Footstand
Unitree H1 Biped InplaceGaitTracking, JoystickGaitTracking
OP3 Biped Joystick
Boston Dynamics Spot Quadruped JoystickFlatTerrain, JoystickGaitTracking, Getup

Table 5 | Locomotion environments implemented in MuJoCo Playground by robot platform.

C.2. RL Training Details
C.2.1. Observation and Action

We use a unified observation space across all locomotion environments:

(a) Gravity projected in the body frame,
(b) Base linear and angular velocity,
(c) Joint positions and velocities,
(d) Previous action,
(e) (Optional) User command for joystick-based tasks.

For humanoid locomotion tasks, a phase variable [55] is introduced to shape the gait. This phase
variable cycles between −c and c for each foot, representing the gait phase. To capture this information
effectively, the cos and sin of the phase variable for each foot are included in the observation space.
This representation provides a continuous and smooth encoding of the phase, enabling the policy to
synchronize its actions with the desired gait cycle.

The action space is defined differently depending on the task. For joystick tasks, we use an absolute
joint position with a default offset:

?des,B = ?default + 90 0B,

where 90 is the action scale. For all other tasks, we use a relative joint position:

?des,B = ?des,B−1 + 90 0B .

The desired joint position is mapped to torque via a PD controller:

g = 9>
(
?des − ?

)
− 93 ¤?, (1)

where 9> and 93 are the proportional and derivative gains, respectively.
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C.2.2. Domain Randomization

To reduce the sim-to-real gap, we randomize several parameters during training:

• Sensor noise: All sensor readings are corrupted with noise.
• Dynamic properties: Physical parameters that are difficult to measure precisely (e.g., link

center-of-mass, reflected inertia, joint calibration offsets).
• Task uncertainties: Ground friction and payload mass.

C.2.3. Reward and Termination

Table 6 | Reward Functions

Reward Expression
Linear Velocity Tracking @D = 9D exp

(
−‖2;3D,F G − DF G ‖2/fD

)
Angular Velocity Tracking @l = 9l exp

(
−‖2;3l,H − lH‖2/fl

)
Feet Airtime @air = clip (()air − )min) · �contact, 0, )max − )min)
Feet Clearance @clear = 9clear · ‖> 5 ,H − >des5 ,H

‖2 · ‖D 5 ,F G ‖0.5

Feet Phase @phase = 9phase · exp
(
−‖> 5 ,H − @H (q)‖2/fphase

)
Feet Slip @slip = 9slip · ‖� 5 ,7 · D 5 ,F G ‖2
Orientation @ori = 9ori · ‖qbody,xy‖2
Joint Torque @g = 9g · ‖g‖2
Joint Position @? = 9? · ‖? − ?nominal‖2
Action Rate @rate = 9rate · ‖0B − 0B−1‖2
Energy Consumption @energy = 9energy · ‖ ¤? · g‖
Pose Deviation @pose = 9pose · exp

(
−‖? − ?default‖2

)
Termination (Penalty) @termination = 9termination · done
Stand Still (Penalty) @standstill = 9standstill · ‖2;3D,F G ‖
Linear Velocity in Z (Penalty) @lin_z = 9lin_z · ‖DH‖2
Angular Velocity in XY (Penalty) @ang_xy = 9ang_xy · ‖lF,G ‖2

In Table 6, 2;3D,F G and 2;3l,H represent the commanded linear velocity in the F G-plane and angular
velocity around the H-axis, respectively. DF G and lH are the actual linear and angular velocities. )A
and )0 represent the time of the last touchdown and takeoff of the feet. > 5 ,H and >des

5 ,H
denote the

actual and desired foot heights, while D 5 ,F G is the horizontal foot velocity. g is the torque, ? is the joint
position, and ¤? is the joint velocity.

The total reward @total is calculated as the weighted sum of all the reward terms:

@total =
∑
7

E7@7,

Finally, the total reward is clipped to ensure it remains non-negative.

Termination: For joystick-controlled policies, we use a reduced collision model (only the feet) and
terminate the episode if the robot inverts (e.g., ends up upside down). For other tasks, we employ the
full collision model approximated using geometric primitives.

C.2.4. Network Architecture

We employ an asymmetric actor–critic [46] setup, in which the policy network (actor) and the value
network (critic) receive different observation inputs. The policy network is fed with the aforementioned
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observations, while the value network additionally receives uncorrupted versions of these signals and
extra sensor readings such as contact forces, perturbation forces, and joint torques.

Both the policy and value networks use a three-layer multilayer perceptron (MLP) with hidden
sizes of 512, 256, and 128. Each hidden layer uses the Swish [48] activation function. A full set of
hyper-parameters is available in Appendix F.

C.2.5. Finetuning

Joystick policy.

1. Train for 100M timesteps with a command range of {1.5, 0.8, 1.2}.
2. Finetune for 50M timesteps with a command range of {1.5, 0.8, 2c}.
3. Finetune on rough terrain for 100M timesteps.

Getup policy.

1. Train with a power termination cutoff of 400W.
2. Finetune with a joint velocity cost.

Handstand and footstand policies.

1. Finetune with a joint acceleration and energy cost.
2. Progressively reduce the power termination budget from 400W to 200W.

Finally, all policies are trained on flat terrain for 200M timesteps, then finetuned on rough terrain
for 100M timesteps. The rough terrain is modeled as a heightfield generated from Perlin noise.

C.3. RL Training Results
For all locomotion environments implemented in MuJoCo Playground, we train with PPO using the RL
implementation from [13] and we report reward curves below. In Figure 11 we report environment
steps versus reward and in Figure 12 we report wallclock time versus reward. All environments are
run across 5 seeds on a single A100 GPU.

C.4. RL Training Throughput
In Table 7 we show training throughput for all locomotion envs. In Figure 13 we show training
throughput of the Go1JoystickFlatTerrain environment. Different devices and topologies do not make
material difference in training wallclock time, since the environment is quite simple with limited
contacts between the feet and the floor.
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Env PPO Steps per Second
BarkourJoystick 385920 ± 2162
BerkeleyHumanoidJoystickFlatTerrain 120145 ± 484
BerkeleyHumanoidJoystickRoughTerrain 30393 ± 44
G1Joystick 106093 ± 131
Go1Footstand 204578 ± 906
Go1Getup 96173 ± 230
Go1Handstand 204416 ± 738
Go1JoystickFlatTerrain 417451 ± 2955
Go1JoystickRoughTerrain 291060 ± 727
H1InplaceGaitTracking 289372 ± 1498
H1JoystickGaitTracking 291018 ± 1111
Op3Joystick 198910 ± 406
SpotFlatTerrainJoystick 404931 ± 2710
SpotGetup 266792 ± 1038
SpotJoystickGaitTracking 407572 ± 4091

Table 7 | Training throughput is displayed for all the Locomotion environments on an A100 GPU
device across 5 seeds using brax PPO and the RL hyperparameters in Appendix F. We report the 95th
percentile confidence interval.
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Figure 11 | Reward vs environment steps for Brax PPO. All settings are run with 5 seeds on a single A100 GPU
device.
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Figure 12 | Reward vs wallclock time for Brax PPO. All settings are run with 5 seeds on a single A100 GPU
device. Notice that the initial flat region measures the compilation time for the training + environment code.
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Figure 13 | Training wallclock time for Go1JoystickFlatTerrain on different GPU devices and topologies.
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C.5. Real-world Setup
All locomotion deployments are based on ros2-control and are written in C++ with real-time
guarantees. The Unitree SDK1, Unitree SDK2, and the Berkeley Humanoid EtherCAT master are each
wrapped as abstract sensor and actuator hardware interfaces. These same interfaces are also used in
Gazebo [28] to facilitate sim-to-sim verification.

Different RL policies can be loaded and executed within the same process—whether operating
on physical hardware or in simulation—by receiving sensor readings and issuing control commands
via the hardware interface. Each policy model is inferenced at 50 Hz using ONNX Runtime [11],
alongside a model-based estimator. In addition, a separate model-based estimator [12] runs at the
hardware interface’s maximal communication frequency (500–2000 Hz), providing linear velocity
observations and other diagnostic information.
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D. Manipulation
D.1. Environments

Robot Environment
Aloha SinglePegInsertion
Franka Emika Panda PickCube, PickCubeOrientation, PickCubeCartesian,

OpenCabinet
Franka Emika Panda, Robotiq Gripper PushCube
Leap Hand Reorient, RotateZAxis

Table 8 | Manipulation environments implemented in MuJoCo Playground by robot platform.

D.2. RL Training Results
For all manipulation environments implemented in MuJoCo Playground, we train with PPO using the
RL implementation from [13] and we report reward curves below. In Figure 14 we report environment
steps versus reward and in Figure 15 we report wallclock time versus reward. All environments are
run across 5 seeds on a single A100 GPU.
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Figure 14 | Reward vs environment steps for brax PPO. All settings are run with 5 seeds on a single A100 GPU
device.

D.3. RL Training Throughput
We show RL training throughput for all manipulation environments below in Table 9. In Figure 16 we
show reward versus wallclock time on different GPU devices and topologies for the LeapCubeReorient
environment.
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Figure 15 | Reward vs wallclock time for brax PPO. All settings are run with 5 seeds on a single A100 GPU
device. Notice that the initial flat region measures the compilation time for the training + environment code.

Env PPO Steps per Second
AlohaSinglePegInsertion 121119 ± 2159
LeapCubeReorient 76354 ± 143
LeapCubeRotateZAxis 76602 ± 179
PandaOpenCabinet 136007 ± 1553
PandaPickCube 140386 ± 1707
PandaPickCubeCartesian 38015 ± 5302
PandaPickCubeOrientation 140429 ± 1604
PandaRobotiqPushCube 487341 ± 4346

Table 9 | Training throughput is displayed for all the Manipulation environments on an A100 GPU
device across 5 seeds using brax PPO and the RL hyperparameters in Appendix F. We report the 95th
percentile confidence interval.
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Figure 16 | Training wallclock time for LeapHandReorient on different GPU devices and topologies.
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D.4. Real-world Cube Reorientation with a Leap Hand
In this section, we present the technical details of our real-world cube reorientation task using
the LEAP Hand, covering the simulation environment, training process, hardware interface, and
camera-based object pose estimation.

D.4.1. Simulation Environment

The in-hand reorientation environment is designed to sequentially re-orient a cube within the palm
of a robotic hand, without dropping the cube. The cube is initialized randomly above the palm of
the hand. The policy then receives the joint angle measurements, estimated cube pose, and previous
action. Upon reaching a target orientation within a 0.4 rad tolerance, a new orientation is sampled and
the success counter is incremented. We continue re-sampling new target orientations until the cube
is dropped or the hand becomes stuck for over 30 s. To avoid trivial adjustments, new orientations
are sampled at least 90° away from the previous goal (as in [19, 32]). The cube must reach a target
orientation within 0.1 rad (as opposed to 0.4 rad in the real-world setup).

Policy Inputs and Actions. As in locomotion environments, we use an asymmetric actor–critic
setup, in which the policy network (actor) and the value network (critic) receive different observation
inputs. The policy network is fed observations as outlined below, while the value network additionally
receives uncorrupted robot pose, robot velocity, fingertip positions, cube pose, cube velocity, and
perturbation forces.

• Observations (a) noisy estimates of the hand joint positions and velocities, (b) joint position errors
(commanded vs achieved), (c) noisy estimates of the cube pose (distance of the cube to the palm
center and cube orientation error), and (d) the previous commanded joint positions.

• Actions 16 relative joint positions.

Training Setup. To promote sim-to-real transfer, we apply domain randomization on friction, cube
mass, joint offsets, motor friction, reflected inertia, and PD gains, as well as link masses and sensor
noise. We also add 2 cm positional and 0.1 rad rotational noise to the cube pose. We conduct two
main training phases. During the first 200M steps, we train without random pose injection and
torque limits. We then perform a 100M-step fine-tuning stage in which we introduce random pose
“injections” with a 0.1 probability to mimic “freak-out” moments in real pose estimation (e.g., due to
occlusions) and impose torque limits to match the real hardware.

D.4.2. System Identification and Domain Randomization

The original simulation environment for sim-to-real transfer provided by the LEAP Hand [56] does
not include robust system identification and instead relies heavily on manual parameter tuning. To
improve both the performance and transparency of the system, we performed system identification
on the DYNAMIXEL servo actuator used in the hand.

The armature inertia (i.e., rotor inertia reflected through the gearbox) for each joint is: �a = 92g �r,

where 9g = 288.35 is the gear ratio from the supplier’s data sheet, and �r =
1
2;r@

2
r = 1.7 × 10−8 kgm2

is the rotor inertia. To obtain �r, we assumed a uniformmass distribution of the rotor, based on physical
disassembly and measurements of the rotor mass (;r = 2.0 × 10−3 kg) and radius (@r = 4.12 × 10−3m).

Because accurately modeling and measuring friction losses is difficult, we set 10% of the maximum
torque as the nominal friction value, and employed heavy domain randomization to account for
uncertainties.
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For training, the servo actuator was controlled using a PD mapping similar to the locomotion setup
in (1). However, during real-world deployment, the control law running on the servo actuator is:
7 = 9mp

(
\mdes − \

m)
− 9md

¤\m, where 7 is the motor current command, and 9mp , 9md , \
m
des, \

m are expressed
in units different from those used in training. To reconcile these discrepancies, we assume g = 9t7 and
carefully compute the mappings based on the motor specifications provided in the data sheet.

Unlike the locomotion setup, the DYNAMIXEL actuator does not perform true current control (i.e.,
no direct motor current feedback). As a result, the above PD controller may deviate from the ideal
behavior. To mitigate this mismatch, we introduce randomization in 9p and 9d parameters during
training.

D.4.3. Real Robot Setup

We deploy the learned policy on the hand using its open-source software, with the following modifi-
cations:

• Control Frequency. We reduce the policy control frequency from 150Hz to 20Hz in both simulation
and real-world deployment, due to jitter issues with the low-level USB driver at higher frequencies.

• System Identification. We use the same torque (current) limit, stiffness, and damping parameters
in training, guided by the system identification results described above.

D.4.4. Vision-based Pose Estimator

We use the vision-based cube pose estimator from [19] in order to solve for the pose of the cube,
although any equivalent method of obtaining the SE(3) camera-to-object transformation would work.
Given the local-space 3D coordinates of the cube and the 2D keypoints from the pose estimator, we
solve for the camera-to-world transformation. Using camera-to-hand intrinsics calibration, we can
then find the hand-to-cube transformation which is used as input to the policy. We run the cube pose
estimator at 15Hz. During manipulation, we observe some small jitters or missed detections, but
generally it is stable. Despite having access to three cameras on the physical hardware setup ([32],
we elect to use only one for simplicity.
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D.5. Real-world Non-prehensile Block Reorientation with a Franka-Robotiq Arm
In this section, we provide technical details for our block reorientation task on a real Franka Emika
Panda robot with a Robotiq gripper, including the simulation environment, training process, robot
hardware interface, and camera-based object pose estimation. Our approach enables reliably learning
and deploying a policy for non-prehensile manipulation of a yoga block, requiring only a brief training
time in simulation while allowing zero-shot transfer to the real robot.

D.5.1. Simulation Environment

The simulation environment (Figure 17) is designed to reorient a rectangular yoga block within a
tabletop workspace region. The block is initialized at a random position and orientation subject to
workspace bounds, and is then pushed, slid, or tapped to a desired goal pose at the center of the
workspace. The policy uses 7D torque control signals for the robot arm and a fixed, closed Robotiq
gripper. We include a simple termination condition when the block leaves the workspace or the
end-effector violates safety constraints (e.g., collides with walls or floors).

Key Features.

• High-frequency torque control at 200Hz. Each simulation step is advanced at a high frequency
to match the targeted real-world controller rate.

• Curriculum learning. We randomize initial joint positions, block poses, latencies in actions and
observations, and other environment factors. A progressive curriculum increases the difficulty by
gradually expanding the block’s displacement and orientation range.

• Observation Delay. Both actions and observations are delayed by random amounts at each episode
step to approximate real hardware latencies.

• Reward Shaping. Shaped rewards encourage the robot to (i) stay near a nominal joint configuration,
(ii) minimize velocities, (iii) keep the end-effector near the block, (iv) push the block toward the
goal, and (v) orient the block to the desired angle.

Policy Inputs and Actions. As shown in the environment code:

• Observations (a) noisy estimates of the block pose, (b) current and recent robot joint positions
and velocities, (c) the estimated end-effector pose, and (d) the target block pose.

• Actions are 7D torque commands applied at the robot’s joints. A constant action for the gripper
(fingers closed) is appended for technical reasons in MuJoCo but remains fixed at a configured
grasp.

Simulated Environment Details.

• Gravity Compensation and Torque Bounds. We configure the MuJoCo model to match the real
robot’s gravity compensation mode. Torque bounds are set to 8Nm per joint in simulation, reflecting
the approximate safe torque limit on real hardware.

• Collision Geometry. The environment enforces collisions with floor, walls, and the block. The
Robotiq gripper is held fixed but included for contact modeling.

• Delayed Observations and Actions. We adopt random delays (between 1 and 3 steps for actions,
and 6 to 12 steps for observations) to emulate real system communication latencies and sensor
delay, following best practices in sim-to-real transfer.
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Figure 17 | Example MuJoCo scene of our block reorientation environment. The block is pushed toward the
center.

Training Setup. We train the policy on a 16x NVIDIA A100 GPU set-up for ten minutes of wall-clock
time, with 3000 steps per episode (with action repeat set to 4, effectively running 750 policy decisions
per episode). During training, the block’s pose, robot states, and delays are heavily randomized. The
final policy was selected from a checkpoint that achieved the highest success rate in the simulator.

D.5.2. Real Robot Setup

We deployed the final trained policy on a Franka Emika Panda manipulator equipped with a Robotiq
2F-85 gripper and an integrated force torque sensor (Robotiq FT-300). Figure 18 illustrates the
hardware platform used for our experiments.

Direct Torque Control with Franka FCI. We interface with the robot via the Franka Control
Interface (FCI) and send torque commands at 200Hz:

• Gravity Compensation. The Panda is configured to compensate for the arm’s own weight. The
policy torques therefore focus on regulating the contact interactions with the block, making the
system compliant.

• Bypassing Low-level PID Gains. We avoid additional position or velocity tracking by sending raw
joint torques. This significantly reduces the overhead of tuning any gain schedules and allows the
learned policy to directly control contact forces.

• Safety Considerations. We define software torque limits and monitor the robot’s built-in safety
stops and collision detection thresholds. In practice, the learned policy operates well within these
limits to gently push the block.

Control and Communication Pipeline. We use a lightweight C++/ROS node that relays torque
commands to the Franka FCI at 200Hz:

• Policy Node in Python. Our Python node loads the final trained policy (JIT-compiled for inference
speed). At each 5ms tick, it receives the robot’s current joint positions, velocities, and the estimated
block pose from ROS topics.

• Torque Message Publication. The Python node computes a new 7D torque vector and publishes
it as a ROS message to the C++ node. This node directly invokes the FCI’s real-time interface to
set joint torques.

• Timing Synchronization. We maintain a fixed 200Hz loop, matching the simulator’s update
frequency. This avoids aliasing or missed steps and ensures that delays in the real system resemble
the random delays already modeled in simulation.
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Figure 18 | Real Franka Emika Panda robot with a Robotiq gripper, pushing the yoga block to the goal region.

D.5.3. Camera-based Block Pose Estimation

The policy requires an estimate of the block’s 6D pose (position and orientation). We implement a
multi-camera setup with four commodity RGB cameras:

• Intrinsics and Extrinsics. Each camera is calibrated via OpenCV’s standard calibration procedure.
We record images of a checkerboard pattern from various viewpoints to obtain precise intrinsic
parameters (focal length, principal point) and extrinsic transformations.

• AR Tag Tracking. We attach an Alvar [44] fiducial marker to each face of the yoga block. Each
camera runs the Alvar pose estimation pipeline. The final block pose is computed as the uniform
average of valid detections.

• Placement Recommendations. To improve coverage and reduce occlusions, we place two cameras
at a lower height (approximately 40 cm above the table) and two cameras overhead (around 80 cm),
all aimed toward the center of the workspace, inline with the base of the arm. This diversity of
vantage points helps maintain robust tracking, even as the block is manipulated.

• ROS Integration. Each camera node publishes pose estimates (with timestamps). A central ROS
node fuses these estimates and broadcasts the block pose as a geometry_msgs/PoseStamped
message at about 30–60Hz.

Summary. With this environment and training protocol, policies learned in simulation (under
domain randomization and fast torque-control loops) exhibit a robust ability to transfer zero-shot to
real hardware. Additionally, we encountered several limitations with the policy and workspace. For
example, the policy sometimes pushed the block outside the robot’s workspace, making it impossible
for the robot to reach it. We also observed that early versions of the policy moved the block too
quickly, exceeding the robot’s force limit and causing it to pause. To address this, we introduced
torque penalties, enabling the robot to maintain similar behavior while minimizing force. In summary
we found that minimal engineering overhead was needed to align the MuJoCo-based environment
with the real robot’s dynamic properties, underscoring the effectiveness of torque-based sim-to-real
strategies with MuJoCo Playground.
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Figure 19 | Policy inputs across domain randomized environments (64x64 pixels each) used while training
the deployed PandaPickCubeCartesian agent. Lighting conditions, colors, brightness and camera pose are all
randomized.

D.6. Real-world Franka PickCube from Pixels
To highlight the sim-to-real viability of our pixel-based environment, we highlight a robust real-world
transfer using the Franka PickCube task.

Task Description. In our PickCube task, the goal of the robot is to move and grasp a 2x2x3 cm
upright cube and return it to a fixed target position. To enable robust deployment with a single RGB
camera, we limit both the object randomization and the robot’s action space to a fixed Y-Z plane. We
set the target in simulation to be (x, 0.0, 20.0), where x is set such that both the cube and the gripper
initialize are in the same plane. Success is defined in simulation as lifting the object to a target height
of 17 cm, and in real experiments as a stable grasp followed by lifting the object at least 10 cm above
the table. The object’s starting position is randomized along the Y-axis within a 20 cm range centered
around 0. Because we train with randomized camera pose and a black background, we lay white
tape over the range of possible cube starting positions to allow the memory-less policy to gauge its
progress from the grasping site to the target height.

Training. We use a similar reward shaping scheme as [45], using sparse rewards to encourage
lifting the cube and bringing it close to the target position and dense rewards to guide the policy
search in between. To simplify reward tuning, the dense reward terms only consider progress:
@B = clip

(∑
7 @B,7 −max(@1, @2, ..., @B−1), 0

)
. This helps to emphasize the sparse terms during training.

To improve sample efficiency, we terminate the policy upon completion. We train with randomized
lighting conditions, colors, brightness and camera pose for robust real-world transfer as shown in
Figure 19. Similar to the non-prehensile task in Section D.5.1, we adopt a random delay of 0 to 5 steps
for the gripper action, as the real system has a small delay before the grippers begin to close. With an
environment step of 50 ms, this results in the agent learning to adapt to a action delay of up to 0.25
s. We find the resulting conservative grasp behaviour to be important for sim-to-real transfer. We
disable all except the pair-wise collisions between the gripper fingers and cube to increase simulation
throughput.

Agent. Both the agent and critic networks comprise of a standard lightweight CNN architecture
[42] followed by two hidden dense layers with size 256. Each channel of the input RGB image is
individually normalised per sample by subtracting its mean and dividing it by its standard deviation.
The policy network outputs a 3 value action from a single RGB camera looking down towards the
gripper (Figure 20). The first two actions are Cartesian increments in the Y and Z directions that
is subsequently solved by an inverse kinematics controller [21]. X movement is ignored so that the
gripper is restricted to the vertical plane of the block. We discretize the third action dimension to
command a closed gripper when the policy value is below zero and an open position when greater
than or equal to zero. All values are outputted in the range -1 to 1.
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Figure 20 | Left. Franka Research robot with a Realsense camera capturing input images. Right. Policy inputs
from one embodied rollout.

Hardware. We train our deployed policies within ten minutes on a single consumer-grade RTX
4090 GPU paired with a i9-14900KF processor. See Appendix E.1 for training curves for the PandaPick-
CubeCartesian environment. We deploy on a Franka Research arm with an Intel D435 Realsense
camera, using an RTX 3090 GPU for policy inference running at 15Hz.

Control and Communication Pipeline. We use a C++/ROS stack to execute our vision-based
policies in real life. Camera images are square-cropped and down-sampled to 64x64 pixels before
being passed to a lightweight C++ ONNX ROS Node for inference to produce a Cartesian increment
and gripper command. This command is passed to a C++ ROS Node that computes joint commands
using the same IK solution as used for training. These commands are output to a final ROS Node that
wraps the Franka Control Interface (FCI) to control the robot joints. The control loop runs at 15 Hz,
set by the incoming camera stream. We find that sim2real performance drastically improves from
roughly calibrating the Cartesian increment scale in our physical setup to the one that the policy was
trained on.
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E. Madrona Rendering Environments
E.1. RL Training Results
MuJoCo Playground showcases two pixel observation environments using batch rendering; CartPole-
Balance and PandaPickCubeCartesian. These two environments include complete training examples
using brax PPO. We show the PPO training curves for both environments in Figures 21 and 22 across
5 seeds.

CartPoleBalance is adjusted for pixel-based observations by decreasing the control frequency such
that more simulated experience can be factored into training with less policy updates, and by re-
adjusting the RL training hyperparameters as necessary. The observations are of dimension 64x64x3
and consist of the current and previous two rendered observations, collapsed into grayscale then
transposed for CNN inference. PandaPickCubeCartesian is derived from PandaPickCube. Our changes
for faster and more stable pixel-based training are described in Appendix D.6.
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Figure 21 | Reward vs environment steps for brax PPO. All settings are run with 5 seeds on a single RTX 4090
GPU.

E.2. Performance Benchmarking
In this section we benchmark the througput of Madrona MJX GPU batch rendering. For reference,
we plot our results alongside those from IsaacLab [41] and Maniskill3 [60]; data for IsaacLab and
Maniskill3 is obtained from [60]. This is only a rough comparison as we only take steps to ensure
similar hardware and timestep size, as a fully controlled performance benchmark is difficult due to the
inherent differences between simulators. Our goal in these comparisons is to only highlight that our
batch rendering is competitive with other state-of-the-art simulators that also include high-throughput
rendering.

The y-axis of Figure 23 measures the rate of generating environment transitions (AB, =B, @B, AB+1) with
random actions, comprising the basic data unit of most on and off-policy training algorithms. The
first subplot measures Cartpole simulation with computationally trivial state-based observations. The
next three plots show the cost of generating transitions where =B involves rendering with increasing
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Figure 22 | Reward vs wallclock time for brax PPO. All settings are run with 5 seeds on a single RTX 4090 GPU.

resolution.

Figure 24 evaluates how much of our throughput increase is due to MJX’s faster physics step. For
each bar, the dark area shows the cost of the physics step and the non-overlapping light area shows
the cost of generating the pixel observation. Note that lower values are better, as we display the
inverse of frequency. While MJX’s faster physics simulation indeed benefits throughput at lower
image resolutions, Madrona’s rendering speed improvements appear to be the primary driver of the
measured speed-ups.
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Figure 23 | Comparison of raw environment-stepping throughput with prior simulators for CartpoleBalance
with state-based and pixel observations of varying sizes.
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Figure 24 | Time-cost breakdown of unrolling physics simulation and rendering for CartpoleBalance with pixel
observations. Lower is better. Per-step rendering time is stacked without overlap over physics simulation time.
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E.3. Bottlenecks in Pixels-based Training

Env Step with Pixels and Inference and Training
CartpoleBalance
FPS 1.37 × 106 4.03 × 105 3.41 × 105 3.13 × 104
Time/Env Step (s) 7.30 × 10−7 2.48 × 10−6 2.93 × 10−6 3.20 × 10−5

PandaPickCubeCartesian
FPS 6.40 × 104 3.69 × 104 3.60 × 104 1.56 × 104
Time/Env Step (s) 1.56 × 10−5 2.71 × 10−5 2.78 × 10−5 6.39 × 10−5

Table 10 | Raw throughput of our two pixel-based environments in various settings. Env step: stepping
the physics with random actions. with Pixels: Same, with the overhead of rendering pixel-based
observations. with Inference: random actions are replaced with policy inference. and Training: the
speed of PPO training. Results averaged over 5 runs on an RTX4090.

Physics Rendering Inference Policy Update
CartpoleBalance
Time/Env Step (s) 7.30 × 10−7 1.75 × 10−6 4.49 × 10−7 2.91 × 10−5
Fraction 0.02 0.06 0.01 0.91

PandaPickCubeCartesian
Time/Env Step (s) 1.56 × 10−5 1.15 × 10−5 6.45 × 10−7 3.62 × 10−5
Fraction 0.24 0.18 0.01 0.57

Table 11 | Breakdown of total training time by component for CartpoleBalance and PandaPickCube-
Cartesian tasks, derived from Table 10. Results averaged over 5 runs on an RTX4090.

Table 11 isolates the contributions of policy rollout (physics simulation, rendering, inference) and
policy update to the overall cost per step in a training loop. We amortize the cost of policy update per
policy rollout step, setting B4 = BB@07<7<6 + B7< 5 4@4<24 + B@4<34@7<6 + B4<DAB4>, where B4 corresponds to Time/Env
Step in the last column of Table 10. Working in reverse order through the table, we isolate each
component. For example, BB@07<7<6 = B4 − B3 corresponds to the Policy Update Time/Env Step.

We see that in both of our provided pixel-based environments, the training speed bottleneck is
shifted from rendering to policy updates. This is especially true for the Cartpole, as the policy and
value architectures includes convolutions determined by the size of the input image regardless of
robot and task complexity. The expensive architecture coupled with the trivial embodiment, shift
over 90% of the training burden to network updates. For the Franka Panda environment, we buffer
more of the computation into the physics by training with a lower control frequency. At 20 Hz control
with a 5ms physics timestep, the policy makes only one decision per 10 simulator sub-steps. Similar
to Cartpole, rendering is less of a bottleneck than the cost of processing the resultant images via
convolutional-based network architectures.
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F. Reinforcement Learning Hyper-parameters
In this section, we report the hyper-parameters used to train RL policies for all environments in
MuJoCo Playground.

F.1. DM Control Suite

Hyperparameter Default Value Environment-Specific Modi-
fications

num_timesteps 60,000,000 AcrobotSwingup, Swimmer,
WalkerRun: 100,000,000

num_evals 10
reward_scaling 10.0
normalize_observations True
action_repeat 1 PendulumSwingUp: 4
unroll_length 30
num_minibatches 32
num_updates_per_batch 16 PendulumSwingUp: 4
discounting 0.995 BallInCup: 0.95,

FingerSpin: 0.95
learning_rate 1e-3
entropy_cost 1e-2
num_envs 2048
batch_size 1024

Table 12 | Brax PPO hyperparameters.
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Hyperparameter Default Value
madrona_backend True
wrap_env False
num_timesteps 1,000,000
num_evals 5
reward_scaling 0.1
normalize_observations True
action_repeat 1
unroll_length 10
num_minibatches 8
num_updates_per_batch 8
discounting 0.97
learning_rate 5e-4
entropy_cost 5e-3
num_envs 1024
num_eval_envs 1024
batch_size 256

Table 13 | Brax PPO hyperparameters for vision-based environments.

Hyperparameter Default Value Environment-Specific Modi-
fications

num_timesteps 5,000,000 Acrobot, Swimmer, Finger,
Hopper,
CheetahRun, HumanoidWalk,
PendulumSwingUp, Walker-
Run: 10,000,000

num_evals 10
reward_scaling 1.0
normalize_observations True
action_repeat 1 PendulumSwingUp: 4
discounting 0.99
learning_rate 1e-3
num_envs 128
batch_size 512
grad_updates_per_step 8
max_replay_size 1048576 * 4
min_replay_size 8192
network_factory.q_network_layer_norm True

Table 14 | Brax SAC hyperparameters.
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F.2. Locomotion

Hyperparameter Default Value
num_timesteps 100,000,000
num_evals 10
reward_scaling 1.0
normalize_observations True
action_repeat 1
unroll_length 20
num_minibatches 32
num_updates_per_batch 4
discounting 0.97
learning_rate 3e-4
entropy_cost 1e-2
num_envs 8192
batch_size 256
max_grad_norm 1.0
policy_hidden_layer_sizes (128, 128, 128, 128)
policy_obs_key "state"
value_obs_key "state"

Table 15 | Default Brax PPO hyperparameters.

Hyperparameter Value
num_timesteps 200,000,000
num_evals 10
num_resets_per_eval 1
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
value_obs_key "privileged_state"

Table 16 | Brax PPO hyperparameters specific to Go1JoystickFlatTerrain and Go1JoystickRoughTerrain.
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Hyperparameter Value
num_timesteps 100,000,000
num_evals 5
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
value_obs_key "privileged_state"

Table 17 | Brax PPO hyperparameters specific to Go1Handstand and Go1Footstand.

Hyperparameter Value
num_timesteps 200,000,000
num_evals 10
discounting 0.95
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
value_obs_key "privileged_state"

Table 18 | Brax PPO hyperparameters specific to Go1Backflip.

Hyperparameter Value
num_timesteps 50,000,000
num_evals 5
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
value_obs_key "privileged_state"

Table 19 | Brax PPO hyperparameters specific to Go1Getup.

Hyperparameter Value
num_timesteps 400,000,000
num_evals 16
num_resets_per_eval 1
reward_scaling 0.1
unroll_length 32
num_updates_per_batch 5
discounting 0.98
learning_rate 1e-4
entropy_cost 0
num_envs 32768
batch_size 1024
clipping_epsilon 0.2
policy_hidden_layer_sizes (512, 256, 64)
value_hidden_layer_sizes (256, 256, 256, 256)
value_obs_key "privileged_state"

Table 20 | Brax PPO hyperparameters specific to G1Joystick.
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Hyperparameter Value
num_timesteps 100,000,000
num_evals 10
num_resets_per_eval 1
clipping_epsilon 0.2
discounting 0.99
learning_rate 1e-4
entropy_cost 0.005
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
value_obs_key "privileged_state"

Table 21 | Brax PPO hyperparameters specific to Berkeley Humanoid.
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F.3. Manipulation

Hyperparameter Default Value
normalize_observations True
reward_scaling 1.0
policy_hidden_layer_sizes (32, 32, 32, 32)
policy_obs_key "state"
value_obs_key "state"

Table 22 | Default Brax PPO hyperparameters.

Hyperparameter Value
num_timesteps 150,000,000
num_evals 10
unroll_length 40
num_minibatches 32
num_updates_per_batch 8
discounting 0.97
learning_rate 3e-4
entropy_cost 1e-2
num_envs 1024
batch_size 512
policy_hidden_layer_sizes (256, 256, 256, 256)

Table 23 | Brax PPO hyperparameters for AlohaSinglePegInsertion.
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Hyperparameter Value
num_timesteps 40,000,000
num_evals 4
unroll_length 10
num_minibatches 32
num_updates_per_batch 8
discounting 0.97
learning_rate 1e-3
entropy_cost 2e-2
num_envs 2048
batch_size 512
policy_hidden_layer_sizes (32, 32, 32, 32)
num_resets_per_eval 1

Table 24 | Brax PPO hyperparameters for PandaOpenCabinet.

Hyperparameter Value
num_timesteps 5,000,000
num_evals 5
unroll_length 10
num_minibatches 8
num_updates_per_batch 8
discounting 0.97
learning_rate 5.0e-4
entropy_cost 7.5e-3
num_envs 1024
batch_size 256
reward_scaling 0.1
policy_hidden_layer_sizes (256, 256)
num_resets_per_eval 1
max_grad_norm 1.0

Table 25 | Brax PPO hyperparameters for PandaPickCubeCartesian.

Hyperparameter Value
num_timesteps 20,000,000
num_evals 4
unroll_length 10
num_minibatches 32
num_updates_per_batch 8
discounting 0.97
learning_rate 1e-3
entropy_cost 2e-2
num_envs 2048
batch_size 512
policy_hidden_layer_sizes (32, 32, 32, 32)

Table 26 | Brax PPO hyperparameters for PandaPickCube.
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Hyperparameter Value
num_timesteps 2,000,000,000
num_evals 10
unroll_length 100
num_minibatches 32
num_updates_per_batch 8
discounting 0.994
learning_rate 6e-4
entropy_cost 1e-2
num_envs 8192
batch_size 512
num_resets_per_eval 1
num_eval_envs 32
policy_hidden_layer_sizes (64, 64, 64, 64)

Table 27 | Brax PPO hyperparameters for PandaRobotiqPushCube.

Hyperparameter Value
num_timesteps 100,000,000
num_evals 10
num_minibatches 32
unroll_length 40
num_updates_per_batch 4
discounting 0.97
learning_rate 3e-4
entropy_cost 1e-2
num_envs 8192
batch_size 256
num_resets_per_eval 1
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
policy_obs_key "state"
value_obs_key "privileged_state"

Table 28 | Brax PPO hyperparameters for LeapCubeRotateZAxis).
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Hyperparameter Value
num_timesteps 100,000,000
num_evals 20
num_minibatches 32
unroll_length 40
num_updates_per_batch 4
discounting 0.99
learning_rate 3e-4
entropy_cost 1e-2
num_envs 8192
batch_size 256
num_resets_per_eval 1
policy_hidden_layer_sizes (512, 256, 128)
value_hidden_layer_sizes (512, 256, 128)
policy_obs_key "state"
value_obs_key "privileged_state"

Table 29 | Brax PPO hyperparameters for LeapCubeReorient.

Hyperparameter Value
madrona_backend True
wrap_env False
normalize_observations True
reward_scaling 1.0
policy_hidden_layer_sizes (32, 32, 32, 32)
num_timesteps 5,000,000
num_evals 5
unroll_length 10
num_minibatches 8
num_updates_per_batch 8
discounting 0.97
learning_rate 5.0e-4
entropy_cost 7.5e-3
num_envs 1024
batch_size 256
reward_scaling 0.1
num_resets_per_eval 1

Table 30 | Brax PPO hyperparameters for vision-based PandaPickCubeCartesian.
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