
2025-01-15

MuJoCo Playground
Kevin Zakka*,2, Baruch Tabanpour*,1, Qiayuan Liao*,2, Mustafa Haiderbhai*,4, Samuel Holt*,3,
Jing Yuan Luo1, Arthur Allshire2, Erik Frey1, Koushil Sreenath2, Lueder A. Kahrs4,
Carmelo Sferrazza†,2, Yuval Tassa†,1 and Pieter Abbeel†,2
1Google DeepMind, 2UC Berkeley, 3University of Cambridge, 4University of Toronto, *Equal contributions, †Equal advising

We introduce MuJoCo Playground, a fully open-source framework for robot learning built with MJX,
with the express goal of streamlining simulation, training, and sim-to-real transfer onto robots.
With a simple pip install playground, researchers can train policies in minutes on a single GPU.
Playground supports diverse robotic platforms, including quadrupeds, humanoids, dexterous hands,
and robotic arms, enabling zero-shot sim-to-real transfer from both state and pixel inputs. This is
achieved through an integrated stack comprising a physics engine, batch renderer, and training environ-
ments. Along with video results, the entire framework is freely available at playground.mujoco.org.

1. Introduction
Reinforcement learning (RL) [27] with subse-
quent transfer to hardware (sim-to-real) [69],
is emerging as a leading paradigm in modern
robotics [26, 30, 40]. The benefits of simulation
are obvious – safety and cheap data. The recipe
involves four steps:

1. Create a simulated environment
that matches the real world.

2. Encode desired robot behavior
with a reward function.

3. Train a policy in simulation.
4. Deploy to the robot.

The key enabler of this approach is a simulator
that is realistic, convenient, and fast.

The realism requirement is self-evident, the
“digital twin” of step 1 demands a minimal level
of fidelity [69]. Convenience and usability are
equally critical, streamlining the creation, modifi-
cation, composition, and characterization (system
identification) of simulated robots.

The importance of speed is less obvious – why
does it matter if training takes ten minutes or ten
hours? The answer lies in reward design (step 2),
which cannot be easily automated: what the robot
ought to do is an expression of human preference.
Even if reward design is semi-automated [37],
the process remains iterative: RL excels at find-
ing policies that obtain reward, but the resulting
behavior is often irregular in unexpected ways.

Since steps 2 and 3 (and occasionally step 4) must
be repeated [7], time-to-robot becomes critical:
the time from when you ask the robot to do some-
thing until you see what it thinks you meant.

RL is computationally intensive, requiring an
enormous number of agent-environment interac-
tions to train effective policies [24]. GPU-based
simulation can significantly accelerate this pro-
cess for two key reasons. First, the median GPU
is far more powerful than the median CPU [65],
and while high core-count CPUs exist, they are
uncommon. Second, by keeping the entire agent-
environment loop on device, we can harness
the high-throughput, highly parallel architec-
ture [13, 39]. This is especially true for on-policy
RL [3, 51], which employs GPU-friendly, wide-
batch operations. Locomotion and manipulation
tasks which previously required days of training
on multi-host setups [4, 59], can now be solved
within minutes or hours on a single GPU [19, 50].

MuJoCo [63] is an open-source simulator pub-
licly developed and maintained by Google Deep-
Mind. Designed to support complex, high-fidelity
simulation, it provides a rich model-definition
language and model-editing APIs, which are well-
documented and conveniently exposed. The sim-
plicity and self-consistency of MuJoCo’s data-
structures and pipeline make it particularly well-
suited for transcription to parallel compute frame-
works. We build upon MuJoCo XLA [43] (MJX),
a JAX-based branch of MuJoCo that runs on GPU,
enabling training directly on device.

Corresponding author(s): btaba@google.com, zakka@berkeley.edu
© 2025 Google DeepMind. All rights reserved

https://playground.mujoco.org/
https://playground.mujoco.org/
https://www.youtube.com/watch?v=EI3gcbDUNiM&t=257s


MuJoCo Playground

Figure 1 | A cartoon of MuJoCo Playground’s diverse environments that were successfully transferred to real
hardware, including Berkeley Humanoid, Unitree Go1 and G1, LEAP hand and Franka Arm.

We introduce MuJoCo Playground, a fully
open-source framework for robot learning de-
signed for rapid iteration and deployment of
sim-to-real reinforcement learning policies. Be-
sides physics and learning, we incorporate on-
device rendering through the Madrona batch ren-
derer [53], facilitating training of vision-based
policies. With a straightforward installation pro-
cess (pip install playground) and cross-
platform support, users can quickly train policies
on a single GPU. The entire pipeline—from en-
vironment setup to policy optimization—can be
executed in a single Colab notebook, with most
tasks requiring only minutes of training time.

MuJoCo Playground’s lightweight implemen-
tation greatly simplifies sim-to-real deployment,
transforming it into an interactive process where
users can quickly tweak parameters to refine
robot behavior. In our experiments, we deployed
both state- and vision-based policies across six
robotic platforms in less than eight weeks. We
hope that MuJoCo Playground becomes a valu-

able resource for the robotics community and ex-
pect it to continue building on MuJoCo’s thriving
open-source ecosystem.

Our work makes three main contributions:

1. We develop a comprehensive suite of robotic
environments using MJX [43], demonstrat-
ing sim-to-real transfer across diverse plat-
forms including quadrupeds, humanoids,
dexterous hands, and robot arms.

2. We integrate the open-source Madrona batch
GPU renderer [53] to enable end-to-end
vision-based policy training on a single GPU
device, achieving zero-shot transfer on ma-
nipulation tasks.

3. We provide a complete, reproducible training
pipeline with notebooks, hyperparameters,
and training curves, enabling rapid iteration
between simulation and real-world deploy-
ment.

2


	Introduction
	Environments
	DM Control Suite
	Locomotion
	Manipulation

	Batch Rendering with Madrona
	Results
	DM Control Suite
	Locomotion
	Quadruped Locomotion
	Humanoid Locomotion

	Manipulation
	In-Hand Cube Reorientation
	Non-Prehensile Block Reorientation
	Pick-Cube from Pixels

	Training Throughput
	Training Throughput with Batch Rendering
	RL Libraries


	Related Work
	Limitations
	Conclusion
	Appendix
	 Appendices
	Author Contributions
	Real World Experiments
	RL and Simulation
	DM Control Suite

	Miscellaneous
	Vision
	Software Infrastructure
	Project Management

	DM Control Suite
	Environments
	RL Training Results
	RL Training Throughput

	Locomotion
	Environment
	RL Training Details
	Observation and Action
	Domain Randomization
	Reward and Termination
	Network Architecture
	Finetuning

	RL Training Results
	RL Training Throughput
	Real-world Setup

	Manipulation
	Environments
	RL Training Results
	RL Training Throughput
	Real-world Cube Reorientation with a Leap Hand
	Simulation Environment
	System Identification and Domain Randomization
	Real Robot Setup
	Vision-based Pose Estimator

	Real-world Non-prehensile Block Reorientation with a Franka-Robotiq Arm
	Simulation Environment
	Real Robot Setup
	Camera-based Block Pose Estimation

	Real-world Franka PickCube from Pixels

	Madrona Rendering Environments
	RL Training Results
	Performance Benchmarking
	Bottlenecks in Pixels-based Training

	Reinforcement Learning Hyper-parameters
	DM Control Suite
	Locomotion
	Manipulation



